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AB ST RACT  
 

Gossypium hirsutum is one of the most vital economical crops. With climatic changes and global warming, its 
production is seriously affected and decreased. Among these climatic stresses, drought is the leading abiotic 
stress that lessens its yields. It affects negatively (directly or indirectly) on several processes including 
morphological, physiological, anatomical and biochemical processes in cotton plants that leads to down 
regulation of cotton plant’s growth. Under drought stress, cotton plants reduce water loss through rolling of 
leaf margins, which decreases the surface area exposed to radiation. This response greatly inhibits the rate of 
photosynthesis, mostly because of reduced stomata conductance. The diminished photosynthetic activity results 
in a decline in dry matter, suggesting that flowers are somewhat protected from water scarcity compared to 
neighboring leaves. Various stress-responsive genes also participate in this process and aid the cotton plant in its 
ability to endure unfavorable conditions. In addition, drought stress decreases the expression of GhSUT-1, a 
sucrose transporter that is essential for exporting photosynthetic carbon assimilates. Drought stress affects 
important enzymes involved in starch production, including AGPase, GBSSase, and SSSase. During drought 
conditions, the activity of GBSSase, which is responsible for the synthesis of amylose, increases. However, the 
activity of AGPase, which is involved in the development of both amylose and amylopectin, is greatly reduced, 
thereby impeding the production of both starch components. In addition, a reduction in SSSase activity leads to 
a decrease in the generation of starch and a decrease in the amount of energy produced by the oxidation of 
glucose in cellular respiration.  
 

Key words: Starch biosynthesis, Stress responsive genes, Amylose, Photosynthetic activity 

 
INTRODUCTION 

 
 Cotton (genus Gossypium) shows two different 
habits such as  naturally it is a perennial plant and, 
commercially it is annual in different parts of the world 
(Egbuta et al. 2017; Zafar et al., 2024a). Cotton fiber 
development occur in four phases which includes 
protoderm differentiation, elongation, secondary wall 
synthesis and fiber maturation stage on last (Zou et al. 
2016; Rehman et al. 2019; Zafar et al., 2024b). It produces 
an important textile fiber that fulfill about 35% of the 
world’s fiber demand. It can be used as model system for 
the study of different mechanisms like plant 
polyploidization, cell elongation etc. Gossypium hirsutum 
produces about 95% of the total natural lint, mostly used 
by textile industries (Huang et al. 2021; Zafar et al., 

2024c). It is an important economic crop in different 
parts of world including Pakistan, China, India and Brazil 
etc (Meyer 2019). Its yearly economic impact was about 
600 Billion dollars (Khan et al. 2020). In 2022-23 its 
production rate was 6.68 million metric tons in China, 
5.66 million metric tons in India, 3.15 million metric tons  
in USA, 0.85 million metric tons in Pakistan and about 
3.06 million metric tons in Brazil (Statista 2023). Ali et al. 
(2019), reported that about 15% of cultivated area in 
Pakistan is cultivated with cotton plants and 1.3 million 
Pakistani farmers cultivate cotton plants on their 
agricultural land which is about 3 million hectares which 
makes Pakistan third biggest exporter of raw cotton and 
fourth largest cotton producing country in the world. It 
is mainly cultivated in warm areas of Pakistan like Punjab 
(~80%) and remaining in Sindh. 
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 Cotton buds is utilized as raw material in different 
products like textiles related products, edible oil, as a 
fodder for life stock and many medicinal products as 
well (Blackwood 2002; Rogers et al. 2002; Hegde et al. 
2004; Raju et al. 2008; Ezuruike et al. 2014; Zain-ul-
Hudda et al., 2024). Cotton plant is also the source of 
precious by-product like terpenes, carbohydrates, lipids, 
proteins, fatty acids and phenolics etc (Bell & Memphis 
1986; Shakhidoyatov et al. 1997; Perveen et al. 2001; 
Perveen et al. 2001; Essien et al. 2011; Hu et al. 2011; Zafar 
et al., 2023a). These compounds played functional role 
and are very essential for living organisms especially 
humans (Rogerio et al. 2009; Essien et al. 2011; Sánchez-
Muñoz et al. 2012; Ku et al. 2013; Suijun et al. 2014). For 
example, the compound that plays the contraceptive 
effects in humans and animals is Gossypol, and it is 
phenolic compound (Han et al. 2007), The increase in 
globally cotton cultivation has resulted into the waste of 
millions of tons of residual after ginning (Buser 2001; 
Knox et al. 2006). These by-products can be used as 
nutritional supplements for animal (Knox et al. 2006; 
Kennedy et al. 2008; Wilde et al. 2010). It is also used as 
commercial bio-fuel applications (Jeoh 1998; Sharma-
Shivappa et al. 2008; McIntosh et al. 2014). 
 The fiber quality of cotton depends upon many 
physical and morphological characteristics that enable 
it to flex and make it capable of being spun into fibers 
(Chee et al. 2005; Zafar et al., 2023b). The important 
physical characters of cotton fiber are its strength, 
fineness (micronaire) and length of fiber (Poehlman et 
al. 1995). The deposition of cellulose molecules inside 
cotton fiber is in positive correlation with the strength 
of fiber hence the cotton fiber will be strong with 
cellulose chains (Bradow & Davidonis 2000).  
 The production of cotton all over the worlds is 
severely affected by bad environmental conditions. The 
abiotic stress factors like flood, drought, heat waves, 
soil pH and salinity and global warming disturbing its 
growth and development. While the biotic factors like 
cotton pests and diseases, weeds and evolved 
herbicides lowers its yields (Mollaee et al. 2019; Zafar et 
al., 2020). Among these stress factors, drought became 
the major threat for cotton because of its long and 
continous spells all with climatic changes all over the 
world. Cotton fiber is badly affected by drought 

because drought directly interferes the plant’s internal 
mechanisms like photosynthesis, carbohydrate 
metabolism, vavoular invertase and starch synthase 
enzymes by producing water deficiency in cotton 
plants. Also under drought stress conditions, cotton 
plant shows reproductive failure, poor pollen fertility 
etc which ultimately affects cotton fiber development 
and its yields (Ul-Allah et al. 2021; Zafar et al., 2022). This 
review discuss effects of stress conditions mainly 
drought stress and response of cotton plant 
physiological, morphologically, genetically and 
biochemically at organism and cellular level against 
these stress conditions.    
 

Cotton Plant Physiological and Biochemical Responses 
to Drought Stress 
 Drought limits global crop yields by disrupting 
plant growth and water efficiency. It reduces 
photosynthesis through stomatal closure and affects 
enzyme functions crucial for energy production 
(Farooq et al. 2012). In cotton, drought during full 
bloom severely impacts fiber development (Snowden 
et al. 2014) and affects fiber thickness and strength 
during secondary cell wall formation, which are 
essential for lint weight (Gao et al. 2020). Mature 
cotton fibers are stronger due to their thicker 
secondary walls and smaller inner cavities (Zhang et al. 
2019). Water scarcity disrupts cell expansion and 
carbohydrate metabolism, reducing fiber length, 
uniformity, and strength (Witt et al. 2020).  
 Drought affects fiber length, strength, and 
micronaire value, with upper fruiting bodies being more 
vulnerable than lower ones (Wang et al. 2016). 
Adequate water at all fiber development stages is 
crucial for optimal yield and quality (Rehman et al. 2019; 
Zhao et al. 2019). While drought early in the plant's life 
reduces plant height and node count, later water 
availability can compensate for yield (Ullah et al. 2017; 
Ibrahim et al. 2019). 
 Cotton's response to drought includes changes in 
photosynthesis, stomatal closure, root development, 
and production of abscisic acid (ABA) and jasmonic 
acid, alongside ROS scavenging (Ullah et al. 2017). 
Antioxidants, phytohormones, nutrient management, 
and other strategies can help mitigate drought stress 
(EL Sabagh et al. 2020). 

 

 

Fig. 1: Ullah et al. (2017), reported the 
general mechanism in cotton plants 
in response to drought stress 
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Photosynthesis and Photorespiration under Drought 
Stress 
 Photosynthesis, a critical process for crop 
production, is significantly hindered by drought stress 
due to limited water availability and stomatal closure. 
Enhancing the photosynthetic rate (Pn) is a key 
breeding strategy for improving crop yields (Richards 
2000). It is widely recognized that genotypes capable 
of sustaining a higher photosynthetic rate in the flag 
leaf over a longer period tend to produce higher yields 
(Guóth 2009). Water use efficiency (WUE), which 
reflects a plant's ability to absorb higher 
concentrations of carbon and manage water loss 
through stomatal control, is crucial under water deficit 
conditions. Although WUE allows for efficient water 
use, it generally results in a reduced overall 
photosynthetic rate (Flexas et al. 2013; de Santana et al. 
2015). Additionally, WUE is closely linked to 
photosynthetic activity and transpiration efficiency, 
both of which are influenced by water availability 
(Monneveux et al. 2006). 
 Studies on chlorophyll fluorescence in both 
irrigated and non-irrigated field plants during summer 
(Flexas et al. 1998) revealed that permanent 
photoinhibition, as assessed by pre-dawn 
photochemical efficiency (Fv/Fm), was rare even under 
severe drought stress. While the rate of light-saturated 
electron transport (ETR), measured at midday, often 
decreased in non-irrigated plants, it did not decline as 
significantly as net CO2 assimilation (An). This 
phenomenon is thought to reflect a relative increase in 
photorespiration, which is known to occur under 
drought conditions (Lawlor et al. 1975; Lawlor 1976; 
Lawlor et al. 1981) and is now well established (Wingler 
et al. 1999; Wingler et al. 2000). 
 In water-stressed plants, oxygen uptake increases 
due to heightened photorespiration activity (Flexas et 
al. 1999; Flexas et al. 2002). Photorespiration serves as 
an important photoprotective mechanism, as suggested 
for other species (Heber et al. 1996; Kozaki et al. 1996). 
A non-significant relationship between leaf water 
potential (Ψ) and the rate of light-saturated electron 
transport indicates that reduced Ψ results in diminished 
thylakoid activity, which is a major factor contributing to 
decreased photosynthetic rates under drought (Flexas 
et al. 1999). The correlation between CO2 assimilation 
(An) and stomatal conductance (gs) is well-documented 
in plants (Escalona et al. 2000; Flexas et al. 2002). 
 Additionally, drought stress leads to a decreased 
capacity for RuBP regeneration, as shown by the CO2-
saturated rate of photosynthesis (Von Caemmerer et al. 
1984; Martin et al. 1992; Escalona et al. 2000). The RuBP 
content in leaves from water-stressed plants confirms 
that reduced RuBP regeneration is an early response to 
water deficit conditions (Gimenez et al. 1992; 
Gunasekera et al. 1993). Farquhar’s model of 
photosynthesis suggests that this reduction may be 
due to decreased ETR. Tezara et al. (1999) reported 
that impaired ATP synthesis through ATPase 

dysfunction could lead to reduced RuBP regeneration. 
Whether this impaired ATPase also affects ETR 
depends on the specific nature of the impairment. 
 
Regulation of Stomata under Drought Conditions 
 Stomata, small openings on the leaf surface 
surrounded by two guard cells, regulate the exchange 
of gases and water vapor (Brodribb et al. 2011; Henry et 
al. 2019; Sussmilch et al. 2019). They perform two main 
functions: opening to allow CO2 uptake for 
photosynthesis and facilitating the transpirational pull 
that delivers mineral nutrients from soil to plant 
tissues, and closing to limit water loss during harsh 
environmental conditions, such as drought (Fang et al. 
2010; Brodribb et al. 2011; Assmann et al. 2016; Brodribb 
et al. 2017; Henry et al. 2019; Waseem et al. 2021). 
 Stomatal closure under water deficit conditions is 
regulated by both metabolic (active) and hydraulic 
(passive) processes (Pei et al. 2000; Brodribb et al. 2011; 
McAdam et al. 2014; McAdam et al. 2016; Brodribb et al. 
2017; Sussmilch et al. 2017). In metabolic regulation, 
stomatal closure is achieved through complex 
processes, particularly ion trafficking (Pei et al. 2000; 
Geiger et al. 2010; Bauer et al. 2013; Abdul-Awal et al. 
2016; McAdam et al. 2016). In contrast, passive stomatal 
closure is driven by a decrease in guard cell turgor 
pressure, which can be influenced by both exogenous 
and endogenous abscisic acid (ABA) (Brodribb et al. 
2011; McAdam et al. 2012; Cardoso et al. 2019). There is a 
direct relationship between leaf water potential and 
stomatal conductance (Cardoso et al. 2019). 
 Water availability directly affects cotton growth, as 
cotton, derived from perennial plants, exhibits 
continuous growth characteristics (Wei et al. 2022). 
Stomatal responses to water potential are observed 
across all species. For instance, stomatal conductance 
can drop from 90% to 20% with a decrease in water 
potential of less than 1 MPa. Despite this rapid decline, 
some species maintain a continuous response. 
Specifically, when water potential falls below -1.65 MPa 
to -2.95 MPa, stomatal conductance decreases to 
below 20% (Pou et al. 2008). 
 
ABA, ROS, and Ca2+'s Roles in Regulating Stomatal 
Function under Stress 
 In response to abiotic stresses such as water 
deficit, cold, heat, and salt stress, plants use various 
signaling molecules including abscisic acid (ABA), 
reactive oxygen species (ROS), and calcium ions (Ca²⁺) 
(Agurla et al. 2018; Kollist et al. 2019; Gong et al. 2020; 
Hasanuzzaman et al. 2020; Pardo-Hernández et al. 
2020). Stomatal regulation is crucial for plants to 
manage these stresses effectively (Agurla et al. 2018). 
During drought stress, plants rapidly close their 
stomata to minimize water loss (Gupta et al. 2020). This 
stomatal response involves various components, 
including receptors, protein kinases, transporters, and 
ion channels, which are regulated by cellular signaling 
mediated by ABA, ROS, and Ca²⁺ (Gong et al. 2020). 
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 ABA is a key regulator of stomatal closure under 
drought conditions (Postiglione et al. 2020). It acts by 
triggering a rapid closure of stomata in response to 
water deficit signals. ABA is synthesized and 
accumulated in guard cells during water stress (Anfang 
et al. 2021) and promotes stomatal closure by activating 
downstream signaling pathways (Chen et al. 2021). 
 Reactive oxygen species (ROS) are harmful 
oxidants that can damage cellular proteins, lipids, and 
nucleic acids when present in excess. However, ROS 
also play crucial roles as signaling molecules in plant 
growth, development, and stress responses, including 
drought (Qi et al. 2018; Yang et al. 2018; Hasanuzzaman 
et al. 2020; Pardo-Hernández et al. 2020). ROS include 
singlet oxygen (¹O₂), superoxide (O₂⁻), hydroxyl radicals 
(-OH), and hydrogen peroxide (H₂O₂) (Sierla et al. 2016; 
Singh et al. 2017; Qi et al. 2018). They are involved in 
regulating stomatal closure in response to osmotic 
stress to prevent water loss (Kwak et al. 2003; Singh et 
al. 2017; Postiglione et al. 2020). Exogenous application 
of H₂O₂ to leaf epidermal layers can induce stomatal 
closure (Hua et al. 2012). 
 Under water stress, ROS production increases in 
various cellular compartments including cell 
membranes, chloroplasts, and peroxisomes (Cruz de 
Carvalho et al. 2008). Key factors involved in ROS 
generation have been identified (Qi et al. 2018), and 
several proteins regulated by ROS play crucial roles in 
controlling stomatal closure during drought (Singh et 
al. 2017; Qi et al. 2018). Recent studies have advanced 
our understanding of ROS signaling in stomatal closure, 
particularly through the identification of H₂O₂ receptors 
(Wu et al. 2020). 
 ROS are also involved in ABA-mediated stomatal 
closure (Postiglione et al. 2020). The production and 
accumulation of apoplastic ROS depend on ABA 
signaling in plants (Wu et al. 2020), suggesting that 
both ABA and ROS are critical for stomatal closure 
during drought. Elevated ROS levels can cause 
oxidative damage, affecting protein activity and leading 
to reduced cotton fiber growth, biomass, chlorophyll 
content, and photosynthesis. Increased ROS during the 
reproductive stage can also degrade fiber quality 
(Anwaar et al. 2015). 
 Calcium ions (Ca²⁺) are important signaling 
messengers in stomatal regulation (Agurla et al. 2018). 
Stomatal movement correlates with cytosolic Ca²⁺ 
concentrations in guard cells, with higher levels 
inducing stomatal closure (McAinsh et al. 1996; Pei et 
al. 2000; Wu et al. 2020). Osmotic stress causes a rapid 
increase in cytosolic Ca²⁺, activating calcium-dependent 
protein kinases (CPKs), calcineurin-B-like proteins 
(CBLs), and CBL-interacting protein kinases (CIPKs) 
(Gong et al. 2020). Many of these proteins are involved 
in stomatal regulation under osmotic stress. 
Additionally, Ca²⁺-induced stomatal closure is also 
regulated by ABA and ROS, which can elevate cytosolic 
Ca²⁺ concentrations in guard cells. Many ABA signaling 
components are influenced by Ca²⁺-mediated signaling 

(Gong et al. 2020). 
 
Cotton under Drought Stress: Soluble Carbs and Starch 
Content in Leaves and Floral Parts 
 Under drought stress, cotton plants reduce water 
loss through rolling of leaf margins, which decreases 
the surface area exposed to radiation (Fang et al. 2015). 
This response significantly reduces the rate of 
photosynthesis, primarily due to decreased stomatal 
conductance. Although this reduction in 
photosynthesis enhances water use efficiency, it also 
lowers the stomatal index on both the adaxial and 
abaxial surfaces of the leaves. Effective stomatal 
regulation is therefore crucial for modulating water use 
efficiency at the leaf level (Bacon 2004; Parry et al. 
2005).  
 Drought stress affects the concentration of soluble 
carbohydrates and starch in both the leaves and floral 
parts of cotton. The reduced photosynthetic rate leads 
to a decrease in dry matter, indicating that flowers are 
somewhat buffered from water deficit conditions 
compared to adjacent leaves (Pilon et al. 2019). 
 Furthermore, drought stress down-regulates the 
expression of GhSUT-1, a sucrose transporter that plays 
a crucial role in exporting photosynthetic carbon 
assimilates. This down-regulation results in a significant 
reduction in the amount of photoassimilates 
accumulated in the pistils of cotton (Hu et al. 2019). In 
addition to impaired sucrose transport, decreased 
starch synthesis limits starch accumulation. Key 
enzymes involved in starch biosynthesis, such as 
AGPase, GBSSase, and SSSase, are affected by drought 
stress. While GBSSase activity, responsible for amylose 
synthesis, increases under drought conditions, AGPase 
activity is significantly reduced, hindering the formation 
of amylose and amylopectin. Additionally, decreased 
SSSase activity results in lower starch synthesis and less 
energy production through glucose oxidation in cellular 
respiration (Wohl et al. 1942), impacting the 
tricarboxylic acid cycle (Nguyen et al. 2010). 
 The expression of GhSus and its orthologs, such as 
AtCYP78A6, AtGIF, and OsGL7, is down-regulated under 
drought stress. The Sus gene encodes an enzyme that 
reversibly converts sucrose into fructose and UDP-
glucose, playing a role in cell wall formation and starch 
accumulation (Ruan 2014). Increased ABA 
concentrations due to water stress can further reduce 
Sus expression (Ruan 2014). In cotton, both 
suppression and overexpression of GhSus genes 
correlate with enzyme activity, seed growth, and fiber 
elongation (Ruan et al. 2003; Jiang et al. 2012). 
 Thus, fiber quality in cotton is highly dependent on 
water availability. During drought stress, reduced 
stomatal activity and photosynthesis lead to lower 
sugar content in the cells, down-regulating various 
genes that diminish fiber quality. Additionally, fiber 
length and strength are adversely affected by 
decreased leaf water potential, which impairs cell wall 
formation—a critical process in fiber development. 
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Fig. 2: Illustration of yield 
reduction pathway in cotton  

 

 
Biochemical Responses to Drought Stress in Cotton 
Plant 
 The plant under drought stress has several 
mechanisms that can eradicate both cellular hyper-
osmolarity and ion unbalance. Plants show biochemical 
responses to manage drought stress. These processes 
help in maintenance of water potential. This is done by 
accumulating low molecular weight compounds, such 
as sugars, glycine-betaine, sugar alcohols and proline 
(Pilon-Smits et al. 1995). Drought stress also increase 
the synthesis of osmolytes and specific proteins 
(Reviron et al. 1992). Moreover, water potential of cell 
is retained by the inward movement of water which is 
done due to the high concentration of solutes 
(Cosgrove 1997). There are some osmolytes that are 
also involved in fiber elongation, such as Soluble 
sugars, malate and potassium. Approximately 80% of 
sap osmolality of fiber is accounted by them (Dhindsa 
et al. 1975; Ruan 2005).  
 Under drought stress water deficiency cause the 
shorter fiber length at flowering stage (Loka et al. 
2011). Longer length fibers are produced by longer 
elongation period (Quisenberry et al. 1975; Braden & 
Smith 2004). The synthesis of  proline and glycine-
betaine act as buffer in redox reaction of cell (Hare et 
al. 1998). Drought induces stomatal closure which 
cause the reduction of CO2 uptake and due to this 
plants are more vulnerable to photo-damage (Cornic & 
Massacci 1996). Drought causes decrease in water 
potential required for photosynthesis in cotton  (Krieg 
1986), which is caused by the less production and 
activity of photosynthesis enzymes  (Jones 1973) and 
production of photosystem II is also decrease due to 
increase of drought stress  ((Wang et al. 2007). 
Hydroxyl radical, superoxide anion, H2O2 and singlet 
oxygen are produced due to disorder in light capturing 
and utilization in cotton (Munné‐Bosch et al. 2003). 
Polyphenol content rise in cotton plant under water 
stress and salt stress (Agastian et al. 2000; 
Muthukumarasamy et al. 2000). 

Reactive Oxygen Species (ROS) and Antioxidative 
Mechanism 
 Drought induces the overproduction of reactive 
oxygen species (ROS), which in turn cause the cellular 
damage and inhibition of physiological process in 
plants. Due to the this production leads to the  
oxidation of various biochemical compounds: lipids, 
proteins, DNA, and RNA (Tripathy et al. 2012). 
Overproduction of ROS can cause oxidative stress to 
the photosynthetic apparatus  (Foyer et al. 2009; Dietz 
et al. 2011) and its  threat to the cell, but they can play a 
functional role in secondary messengers involved in the 
stress signal transduction pathway (Foyer et al. 2009).  
 Drought disturbs the balance of reactive oxygen 
species (ROS) and antioxidant production, which 
further accumulates ROS in plant system. (Reddy et al. 
2004). ROS has very vital role in the inter and intra 
cellular responses which control the growth and 
development process of plant (Van Breusegem et al. 
2001). ROS degrades the lipids in protein, cell 
membrane and nucleic acid (Reddy et al. 2004). Not 
enough information is available about the effects of 
drought stress on agronomics crops like cotton, and 
other economical crops etc. Some studies show that 
there is decrease of linoleic oil, degree of acyl 
unsaturation, phospholipids and glycolipid of leaf tissue 
which undergone drought stress. These all due to the 
inhibition of phospholipids, glycolipid and 
polyunsaturated such as linolenic fatty acid synthesis. 
Due to water stress triacylglycerol is accumulated in 
leaf. The ROS production and membrane damage can 
be assessed by using the Malondialdehyde (MDA) 
(Singh et al. 2021). Plants produce antioxidant 
molecules such as peroxides, catalyses’, reductases, 
mutases and these antioxidant are the scavengers of 
ROS (Xiong et al. 2002). Cotton plants have evolved the 
antioxidant mechanism against RSO production such as 
ascorbate peroxidase (APX), catalase (CAT), guaiacol 
peroxidase (GPX), glutathione reductase (GR), 
dehydro-ascorbate reductase (DHA), and monodehy-

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/biochemical-compounds
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droascorbate reductase (MDAR), these are belonged to 
enzymatic mechanism. There are some non-enzymatic 
mechanism such as ascorbic acid, reduced glutathione, 
flavonoids, a-tocopherol, and carotenoids (Zhang et al. 
2014). 
 
Drought Stress Effects on Carbohydrates 
 Like other cellular constituents , drought stress 
effects the starch and sugar mostly (Prado et al. 2000; 
Abdel-Nasser et al. 2002).There are three vital enzyme 
such as Invertase (INV),starch synthase( StSy) and SPS. 
They play a vital role in carbohydrate metabolism in 
fiber cells. Invertase enzyme is an irreversible enzyme 
that hydrolyzes sucrose into glucose and fructose 
(Wang et al. 2010).  Invertase enzyme increase the 
concentration of osmotic sucrose and play important 
role in expansion of cell fiber (Wang et al. 2010).When 
hexose level decrease then Invertase enzyme activities 
also declines which further stressed fibers sucrose 
synthase. (SuSy) is a glycosyl transferase, it catabolizes 
the sucrose into UDP-glucose and fructose  (Sturm et 
al. 1999). Sucrose synthase (SuSy) provide solute such 
as hexoses and plays very important role in stages of 
development of fiber such as fiber instigation and  
elongation (Ruan 2007). Important sugars that are 
involved in the development of fiber are sucrose, 
fructose and glucose (Jaquet et al. 1982). Relative 
proportion of fructose and glucose are greater than the 
amount of sucrose present (Jaquet et al. 1982; Abidi et 
al. 2010; Tang et al. 2014) and both are considered 
osmotically active solutes in the fibers (Ruan et al. 
2001).  
 Drought stress adversely effects the accumulation 
of starch and reduces it into hexose in the anther of 
cotton from which its restricts the ATP (Adenosine 
triphosphate) production (Hu et al. 2020). Due to this, 
energy currency level decreases which declines the 
production of pollen and leads to premature burst of 
flower and buds (Echer et al. 2014; Hu et al. 2020). and 
plant  biomass is divided into different stages but 
reproductive biomass stages production is decline 
(Wang et al. 2016). Water stress effects the synthesis of 
ADP Glucose pyrophosphate (AGPase) and its activity 
runs downwards (Hu et al. 2019) which further 
suppressed the expression of gene of sucrose synthase 
(GhSusA, GhSusB, and GhSusD), sucrose transportation 
(GhSUT – 1)  and Invertase (GhINV1and GhINV2) in 
carpel (Hu et al. 2019; Pilon et al. 2019; Hu et al. 2020). 
Due to this unfertilized flower is produced (Hu et al. 
2019). The complete fertilization is the only process 
through which  bolls is formed ,which overlaps to seed 
and fiber development (Chen et al. 2015; Rehman et al. 
2019).The gene responsible for the development of 
fiber in cotton seed is well recognized (Ahmed et al. 
2018; Chen et al. 2019) and its expression is mostly 
effected by the water stress (Gao et al. 2020; Loka et al. 
2020) 
 Due to low carbohydrates assimilation in carpel of 
cotton this lead to the falling of flower and buds (Loka 

et al. 2019) and  due to this, boll cell will be destroyed 
(Wang et al. 2016). Some genetic response may stop 
the bolls shedding due to higher activities of callose 
and chitinase. This chitinase and callose regulate the 
assimilation of carbohydrates and its transportation in 
reproductive part (Ibrahim et al. 2019).      
 
Effect of Stress Environment on Cotton plant and its 
Genetic responses  
 DREB proteins, sub-family of ERF discovered in 
Arabidopsis thaliana (Sakuma et al. 2002) are 
transcriptional factors that participate to overcome 
several stresses in different plants (Nakano et al. 
2006). DREB genes were identified 193 in Gossypium 
barbadense (AD2), 183 in Gossypium hirsutum (AD1), 80 
in Gossypium arboreum (A2), and 79 in Gossypium 
raimondii (D5) respectively (Su et al. 2023). These 
transcription factors enhances tolerance in many plants 
against water and salt stress (Lata et al. 2011). For 
example, in cotton plants, transcription factors 
GhDREB1 expressed itself under low-temperature 
stress but over-expression of it may delay the flowering 
and decrease the height of the plant. However, its 
expression can be decreased by the treating it with 
gibberellins on cotton plants (Lata et al. 2011).   
 Floral organs were severely suppressed under 
water stressed conditions, it can cause lower levels of 
pyruvate under water stress in pistils, which is unable 
to provide enough amount of acetyl-CoA for TCA cycle. 
As a result, there is a low amount of ATP in water 
stressed plants (than control) thus a less amount of 
energy in the experimented plant pistils is available for 
the elongation of pollen tube. As a result there is 
reduction in the growth rate of pollen tube (Hu et al. 
2019). Drought stressed cotton enhances GhSusC 
expression, but decrease the expressions of GhSusA, 
GhSusD and GhSusB in pistils. Thus, GhSusA, GhSusD 
and GhSusB have specific roles in degradation of 
sucrose under water stress. (Hu et al. 2019). The 
GhDREB2 also express under conditions of water stress 
(Agarwal et al. 2006). 
 Leaf water potential also affects cotton lint fiber 
quality. Water potential in leaves decreases due to 
scarcity of water, under water deficit condition such as 
drought. The cotton fiber is unable to elongate due to 
the less water turgor pressure in seed coat cells and 
hindrance in the cell wall formation due to the down 
regulation of genes under water deficit with the help of 
chemical signals in the form of ABA (Lokhande et al. 
2014; Ruan 2014) Moreover, the turgor pressure is 
involved in the cell expansion of epidermal cells. In 
drought the less availability of water reduces turgor 
pressure and hence the lint fiber elongation decreases 
(Smart et al. 1998). In the metabolism of 
carbohydrates, the change in the expression of key 
enzymes’ gene provide a good analysis of the impact of 
drought stress on cotton’s reproductive units at 
molecular level. There is the identification of four 
discrete genes of sucrose synthase (GhSusA, GhSusB, 
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GhSusC and GhSusD) in cotton that regulate the 
breakdown of sucrose (Brill et al. 2011).  
 The main genes family of leucine zipper is another 
group of transcriptional factors that expressed in both 
living organism and abiotic stress conditions (Nijhawan 
et al. 2008). Kerr et al. (2017), reported the expression of 
GhABF in many biotic and abiotic stress conditions in 
cotton. While Liang et al. (2016), reported that enhanced 
expression of GhABF2 improves water and salinity stress 
tolerance in cotton. In the same way, the enhanced 
expression of GhABF2D increases drought and 
dehydration resilience by regulating stomata (Collin et al. 
2021). Several genes are also reported in cotton plant 
that helps to tolerate stress conditions and promotes 
growth as well like the expression of GhNAC79 regulates 
the stomatal conductance under drought conditions and 
promotes flowerings and fiber elongation as well (Zhao 
et al. 2023), GhAnn1 expressed in response to water and 
salinity stress (Zhang Feng et al. 2015), GhNAC72 involves 
in water stress tolerance (Mehari et al. 2021), GhNAC12 
promotes leaf senescence (Yang et al. 2023), GhCBF3 
regulates stomatal closure and helps to tolerate drought 
and salt stress (NaCl) in cotton plant through ABA 
pathway (Ma et al. 2016), GhMKK3 regulate stomatal 
response, root hairs growth and enhanced drought 
tolerance (Wang et al. 2016), GhMAP3K40 enhance 
tolerance at the stage of germination against water and 
salinity stress (Chen et al. 2015). 
  GhMAPK4 expressed itself under high salt and 
osmotic stress conditions through ABA signaling 
pathway and negatively regulate the development of 
cotton (Wang et al. 2015), GhMKK4 negatively regulate 
the resistance of disease in cotton plants (Li et al. 2014), 
GhMPK17 expressed itself under salinity (NaCl), ABA 
signaling and osmotic stress (Zhang et al. 2014), 
GhMPK6a show its expression under several defense 
signal molecules and both types of stresses caused by 
living and non-living conditions (bacterial infection, 
salinity stress) (Li et al. 2013), GhMKK1 can be induced 
in cotton plants under H2O2, water and salinity stress 
(Lu et al. 2013), GhMKK5 show its expression under 
numerous stresses caused by abiotic factors like salinity 
and water deficiency stresses and pathogen infections 
(Zhang et al. 2012), GhMPK16 involves in defense 
mechanism and tolerance against many abiotic stress 
factors like temperature stress, salt (NaCl) and water 
deficiency stress (Shi et al. 2011).  
 The genetically modified cotton plants such as 
GhADF1-RNAi transgenic cotton (Qin et al. 2022), show 
an increase in tolerance against drought stress during 
seed germination, seedling development and the 
reproductive stage (Wang et al. 2009). These modified 
plants have enlarged root systems with longer primary 
roots. The root's biomass is also increased with more 
lateral growth of roots. They also have higher yield of 
fiber under both normal and drought conditions. So the 
regulation of the GhADF1 factor in cotton plants will 
improve their fiber yield and drought tolerance (Qin et 
al. 2022). 

Table 1: Cotton genes that expressed in stress conditions. 

Cotton Gene Stress Condition References  

GhMKK3 Drought stress (Wang et al. 2016) 
GhCBF3 Drought and salt stress (Ma et al. 2016) 
GhMPK4 High salinity and 

osmotic stress 
(Wang et al. 2015) 

GhDREB1 Low temperature stress (Lata et al. 2011) 
GhMKK4 Bacterial and fungal 

pathogens stress 
(Li et al. 2014) 

GhSusC Drought stress (Hu et al. 2019) 
GhMPK17 NaCl, mannitol, ABA (Zhang et al. 2014) 
GhDREB2 Drought stress (Agarwal et al. 

2006) 
GhMPK6a Salt stress, drought 

stress and bacterial 
infection 

(Li et al. 2013) 

GhABF2 Drought and salt stress Liang et al. (2016) 
GhABF2D Drought and 

dehydration 
(Collin et al. 2021) 

GhMPK5 NaCl, drought, H2O2 (Lu et al. 2013) 
GhNAC79 Drought stress (Zhao et al. 2023) 
GhNAC72 Drought stress (Mehari et al. 2021) 
GhMPK16 Low and high 

temperature stress, 
manitol, salt stress 
(NaCl), pathogens 

(Shi et al. 2011) 

GhAnn1 Drought and salt stress (Zhang Feng et al. 
2015) 

GhMAP3K40 Drought and salt stress (Chen et al. 2015) 
GhADF1 Drought stress (Qin et al. 2022) 
GhMKK5 Salt stress, drought 

stress and pathogen 
infection 

(Zhang et al. 2012) 

 
Conclusion 
 Drought is the most significant abiotic stress that 
reduces the yields of the plant. It has negative effects 
(either directly or indirectly) on a number of processes 
in cotton plants, including morphological, physiological, 
anatomical, and biochemical processes, which 
ultimately results in a reduction in the growth 
regulation of cotton plants. Different genes that are 
associated to stress also play a role in this process, 
which enables the cotton plant to survive in settings 
that are not necessarily beneficial. On the other hand, 
some genetically modified cotton plants exhibit 
satisfactory yield results when subjected to stressful 
conditions. 
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